Abstract
The Chahmir zinc–lead deposit (1.5 Mt @ 6 % Zn + 2 % Pb) in Central Iran is one among several sedimentary-exhalative Zn–Pb deposits in the Early Cambrian Zarigan–Chahmir basin (e.g., Koushk, Darreh-Dehu, and Zarigan). The deposit is hosted by carbonaceous, fine-grained black siltstones, and shales interlayered with volcaniclastic sandstone beds. It corresponds to the upper part of the Early Cambrian volcano-sedimentary sequence (ECVSS), which was deposited on the Posht-e-Badam Block during back-arc rifting of the continental margin of Central Iran. Based on crosscutting relationships, mineralogy, and texture of sulfide mineralization, four different facies can be distinguished: stockwork (feeder zone), massive ore, bedded ore, and distal facies (exhalites with barite). Silicification, carbonatization, sericitization, and chloritization are the main wall-rock alteration styles; alteration intensity increases toward the proximal feeder zone. Fluid inclusion microthermometry was carried out on quartz associated with sulfides of the massive ore. Homogenization temperatures are in the range of 170–226 °C, and salinity is around 9 wt% NaCl eq. The size distribution of pyrite framboids of the bedded ore facies suggests anoxic to locally suboxic event for the host basin. δ34S(V-CDT) values of pyrite, sphalerite, and galena range from +10.9 to +29.8 ‰. The highest δ34S values correspond to the bedded ore (+28.6 to +29.8 ‰), and the lowest to the massive ore (+10.9 to +14.7 ‰) and the feeder zone (+11.3 and +12.1 ‰). The overall range of δ34S is consistent with a sedimentary environment where sulfide sulfur was derived from two sources. One of them was corresponding to early ore-stage sulfides in bedded ore and distal facies, consistent with bacterial reduction from coeval seawater sulfate in a closed or semiclosed basin. However, the δ34S values of late ore-stage sulfides, observed mainly in massive ore, interpreted as a hydrothermal sulfur component, leached from the lower part of the ECVSS. Sulfur isotopes, along with the sedimentological, textural, mineralogical, fluid inclusion, and geochemical characteristics of the Chahmir deposit are in agreement with a vent-proximal (Selwyn type) SEDEX ore deposit model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.