Abstract

The dynamics of the tripartite thermal entanglement measured by Negativity (N) and the tripartite quantum correlation described by measurement-induced disturbance (MID) under Ornstein–Uhlenbeck noise are investigated. This study has found that the tripartite N and MID can be preserved more effectively in the non-Markovian environment than in the short-time limit and the Markov limit cases. The short-time limit is a better approximation than the Markov limit. MID vanishes only in the asymptotic limit, while entanglement sudden death may occur, and the decreasing duration of MID far outweighs entanglement. This implies that MID is more robust than Negativity. As the noise bandwidth increases, the disentanglement time and the decay time of MID are significantly shorter. The increase of XZX[Formula: see text]+[Formula: see text]YZY three-site interaction is more effective than XZY−YZX three-site interaction to enhance Negativity and MID as well as the disentanglement time. The magnetic field diminishes Negativity and MID, but has no significant influence on the decreasing durations of both Negativity and MID.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call