Abstract
The Space Shuttle Orbiter will be used as an orbital base for near-term space operations. Its payloads will range from compact satellites to large, flexible antennas. This paper addresses the problem of the dynamics and control of the Orbiter with a flexible payload. Two different cases are presented as examples. The first is a long, slender beam which might be used as an element in a large orbiting structure. The second is a compact satellite mounted on a spin table in the Orbiter payload bay. The closed loop limit cycles are determined for the first payload and the open loop eigenvalues are calculated for the second. Models of both payloads are mechanized in a simulation with the Shuttle on-orbit autopilot. The vehicle is put through a series of representative maneuvers and its behavior analyzed. The degree of interaction for each payload is determined and strategies are discussed for its reduction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have