Abstract
Extensive density functional theory (DFT) calculations using the B3LYP functional were used to explore the sextet and quartet energy potential energy surfaces (PESs) of the title reaction, and as a basis to fit global analytical reactive PESs. Surface-hopping dynamics on these PESs reproduce the experimentally observed reactivity and confirm that hydrogen activation rather than spin-state change is rate-limiting at low reaction energy, where the main products are Fe+ and H2 O. A change in spin state is inefficient in the product region so that excited-state 4 Fe+ is the dominant product. At higher energies, spin-allowed hydrogen atom abstraction to form FeOH+ predominates. At intermediate energy, a previously unexpected rebound mechanism contributes significantly to the reactivity.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have