Abstract
We present a micro-founded simulation model that formalizes the “ready, willing, and able” framework, originally used to explain historical fertility decline, to the practice of prenatal sex selection. The model generates sex ratio at birth (SRB) distortions from the bottom up and attempts to quantify plausible levels, trends, and interactions of son preference, technology diffusion, and fertility decline that underpin SRB trajectories at the macro level. Calibrating our model for South Korea, we show how even as the proportion with a preference for sons was declining, SRB distortions emerged due to rapid diffusion of prenatal sex determination technology combined with small but growing propensities to abort at low birth parities. Simulations reveal that relatively low levels of son preference (about 20 % to 30 % wanting one son) can result in skewed SRB levels if technology diffuses early and steadily, and if fertility falls rapidly to encourage sex-selective abortion at low parities. Model sensitivity analysis highlights how the shape of sex ratio trajectories is particularly sensitive to the timing and speed of prenatal sex-determination technology diffusion. The maximum SRB levels reached in a population are influenced by how the readiness to abort rises as a function of the fertility decline.Electronic supplementary materialThe online version of this article (doi:10.1007/s13524-016-0500-z) contains supplementary material, which is available to authorized users.
Highlights
Since the 1980s and 1990s, several countries in Asia and the Caucasus have witnessed a rise in the proportion of male births compared with female births, conventionally expressed in terms of the sex ratio at birth (SRB) (Guilmoto 2009, 2015)
How much of the variance of model outcomes is accounted for by different parameters? We address this issue by sensitivity analysis of three model outcomes: (1) the model fit or RMSE measure, which is the average yearly error for 1980–2010 between simulated and UN estimates of South Korean SRB trajectories (see Eq (5)); (2) the South Korean SRB for 1990, when the SRB peaks according to UN estimates; and (3) the maximum SRB level reached by the model
What balance of micro-level behaviors underlie different stages of the sex ratio at birth (SRB) transition at the macro level? What will be the future course of SRB trajectories? By formalizing a general framework for the decision to practice prenatal sex selection—ready, willing, and able—our goal in this study has been to present a model that can be fitted at the individual level to approximate how changes in son preference, technology diffusion, and the fertility squeeze triggered by the fertility decline generate macro-level SRB trajectories
Summary
Since the 1980s and 1990s, several countries in Asia and the Caucasus have witnessed a rise in the proportion of male births compared with female births, conventionally expressed in terms of the sex ratio at birth (SRB) (Guilmoto 2009, 2015). As the only country that has been through all three stages of the archetypal “sex ratio transition,” calibrating the model to the South Korean case can shed light on the levels and rates of change in son preference, diffusion of technology, and probabilities of sex-selective abortion that plausibly underpinned different stages of the transition. In attempting to reconcile these ostensibly paradoxical trends, these studies acknowledged the role of the diffusion of prenatal sex determination technology and fertility decline in contributing to masculine sex ratios amidst declining son preference These studies, did not explicitly model the interplay of these preferences with technology diffusion and fertility decline at the individual-level and link them with macro-level SRB trajectories, nor did they attempt to quantify the micro-level behaviors underpinning macro-level patterns. The resulting population structure obtained in 1980 is very close to the population structure of South Korea reported in UN WPP, and the minor differences that persist are likely attributable to migration dynamics that are not modeled in our initialization procedure
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have