Abstract

SummaryRock fragments in soil can contain significant amounts of organic carbon. We investigated the nature and dynamics of organic matter in rock fragments in the upper horizons of a forest soil derived from sandstone and compared them with the fine earth fraction (<2 mm). The organic C content and its distribution among humic, humin and non‐humic fractions, as well as the isotopic signatures (Δ14C and δ13C) of organic carbon and of CO2 produced during incubation of samples, all show that altered rock fragments contain a dynamic component of the carbon cycle. Rock fragments, especially the highly altered ones, contributed 4.5% to the total organic C content in the soil. The bulk organic matter in both fine earth and highly altered rock fragments in the A1 horizon contained significant amounts of recent C (bomb 14C), indicating that most of this C is cycled quickly in both fractions. In the A horizons, the mean residence times of humic substances from highly altered rock fragments were shorter than those of the humic substances isolated in the fine earth. Values of Δ14C of the CO2 produced during basal respiration confirmed the heterogeneity, complexity and dynamic nature of the organic matter of these rock fragments. The weak 14C signatures of humic substances from the slightly altered rock fragments confirmed the importance of weathering in establishing and improving the interactions between rock fragments and surrounding soil. The progressive enrichment in 13C from components with high‐14C (more recent) to low‐14C (older) indicated that biological activity occurred in both the fine and the coarse fractions. Hence the microflora utilizes energy sources contained in all the soil compartments, and rock fragments are chemically and biologically active in soil, where they form a continuum with the fine earth.

Highlights

  • IntroductionThe total amount of organic C in the upper metre of soil has been estimated to be about 1500 Pg (Eswaran et al, 1993; Batjes, 1996)

  • Soil is the major reservoir of carbon (C) in the terrestrial environment

  • Since fine earth and rock fragments have different bulk densities, the data on the organic C are reported on a volume basis

Read more

Summary

Introduction

The total amount of organic C in the upper metre of soil has been estimated to be about 1500 Pg (Eswaran et al, 1993; Batjes, 1996). This is large relative to the C stored in biomass and atmosphere (Schlesinger, 1991). In the upper horizons of soils derived from sandstone in the northern Apennines of Italy, Ugolini et al (1996) found that the concentration of organic C in rock fragments was close to that of the fine earth

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call