Abstract

Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

Highlights

  • Indicate interaction processes with a low number of people since each agent might be composed of many individuals, already

  • The main control parameter in our model is the relative speed of acquaintance adaptation vs coalition formation, the adaptation rate φ, and the main feature of the resulting dynamics is the distribution of coalition sizes that evolves as an equilibrium over time

  • What can we infer from these results? If the acquaintance network in our coalition formation model adapts only slowly to the coalition structure, the formation of a grand coalition is most probable

Read more

Summary

Introduction

Indicate interaction processes with a low number of people since each agent might be composed of many individuals, already. A common economic situation for which cooperation is critical is the use of a common pool resource. It leads to nontrivial coalition formation dynamics because agents have an incentive to form a coalition and to leave a coalition in order to profit from the efforts of the remaining coalition. Since one of the major current economic challenges, the transition to a low-carbon economy, is closely related to several common pool resources like the atmosphere and renewable energy sources, we focus on the application of our model to common pool resources in this article

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.