Abstract

A class of aquatic robots have been shown to have a correspondence to terrestrial nonholonomic systems. In particular bodies shaped as a Joukowski foil have been shown to have dynamics similar to a well known nonholonomic system, the Chaplygin sleigh. This inspires several related rigid body nonholonomic systems whose behavior is similar to other aquatic robots with other morphologies. In this paper we investigate the dynamics of one such nonholonomic system, a two-link Chaplygin sleigh that is controlled by an internal momentum wheel. This system is analogous to a similar aquatic robot with a passive tail. We also discuss results related to the accessibility and controllability of the two-link Chaplygin sleigh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.