Abstract
This paper is concerned with a nonholonomic system with parametric excitation—the Chaplygin sleigh with time-varying mass distribution. A detailed analysis is made of the problem of the existence of regimes with unbounded growth of energy (an analogue of Fermi’s acceleration) in the case where excitation is achieved by means of a rotor with variable angular momentum. The existence of trajectories for which the translational velocity of the sleigh increases indefinitely and has the asymptotics is proved. In addition, it is shown that, when viscous friction with a nondegenerate Rayleigh function is added, unbounded speed-up disappears and the trajectories of the reduced system asymptotically tend to a limit cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.