Abstract

Neuronal networks of dissociated cortical neurons from neonatal rats were cultured over a multielectrode dish with 64 active sites, which were used both for recording the electrical activity and for stimulation. After about 4 weeks of culture, a dense network of neurons had developed and their electrical activity was studied. When a brief voltage pulse was applied to one extracellular electrode, a clear electrical response was evoked over almost the entire network. When a strong voltage pulse was used, the response was composed of an early phase, terminating within 25 ms, and a late phase which could last several hundreds of milliseconds. Action potentials evoked during the early phase occurred with a precise timing with a small jitter and the electrical activity initiated by a localized stimulation diffused significantly over the network. In contrast, the late phase was characterized by the occurrence of clusters of electrical activity with significant spatio-temporal fluctuations. The late phase was suppressed by adding small amounts of D(-)-2-amino-5-phosphonovaleric acid to the extracellular medium, or by increasing the amount of extracellular Mg2+. The electrical activity of the network was substantially increased by the addition of bicuculline to the extracellular medium. The results presented here show that the neuronal network may exist in two different dynamical states: one state in which the neuronal network behaves as a non-chaotic deterministic system and another state where the system exhibits large spatio-temporal fluctuations, characteristic of stochastic or chaotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.