Abstract
We study the dynamics of a duopoly game à la Bertrand with horizontal product differentiation as proposed by Zhang et al. (2009) [35] by introducing opportune microeconomic foundations. The final model is described by a two-dimensional non-invertible discrete time dynamic system T. We show that synchronized dynamics occurs along the invariant diagonal being T symmetric; furthermore, we show that when considering the transverse stability, intermittency phenomena are exhibited. In addition, we discuss the transition from simple dynamics to complex dynamics and describe the structure of the attractor by using the critical lines technique. We also explain the global bifurcations causing a fractalization in the basin of attraction. Our results aim at demonstrating that an increase in either the degree of substitutability or complementarity between products of different varieties is a source of complexity in a duopoly with price competition.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have