Abstract
The wave field of an elastic quarter space is constructed when one face is rigidly fixed and a dynamic normal compressive load acts on the other along a rectangular section at the initial moment of time. Integral Laplace and Fourier transforms are applied sequentially to the equations of motion and boundary conditions in contrast to traditional approaches when integral transforms are applied to solutions' representations through harmonic functions. This leads to a one-dimensional vector homogeneous boundary value problem with respect to unknown displacement's transformants. The problem was solved using matrix differential calculus. The original displacement field was found after applying inverse integral transforms. For the case of stationary vibrations a method of calculating integrals in the solution in the near loading zone was indicated. For the analysis of oscillations in a remote zone the asymptotic formulas were constructed. The amplitude of vertical vibrations was investigated depending on the shape of the load section, natural frequencies of vibrations and the material of the medium.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have