Abstract
A stochastic cellular automaton (CA) model for activated sludge system (ASS) is formulated by a series of transition functions upon realistic treatment processes, and it is tested by comparing with ordinary differential equations (ODEs) of ASS. CA system performed by empirical parameters can reflect the characteristics of fluctuation, complexity and strong non-linearity of ASS. The results show that the predictions of CA are approximately similar to the dynamical behaviors of ODEs. Based on the extreme experimental system with complete cell recycle in model validation, the dynamics of biomass and substrate are predicted accurately by CA, but the large errors exist in ODEs except for integrating more spatially complicated factors. This is due to that the strong mechanical stress from spatial crowding effect is ignored in ODEs, while CA system as a spatially explicit model takes account of local interactions. Despite its extremely simple structure, CA still can capture the essence of ASS better than ODEs, thus it would be very useful in predicting long-term dynamics in other similar systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.