Abstract
The corrosiveness of lead bismuth eutectic (LBE), as an ideal coolant candidate in reactors and accelerator driven systems (ADSs), presents a critical challenge for safe applications. One of the effective ways to protect the materials is to form and maintain a protective oxide film along the structural material surfaces by active oxygen control technology. The oxidation of metals in LBE environment has been investigated numerically at a mesoscopic scale. A novel stochastic cellular automaton (CA) model has been proposed considering the transport of oxygen along the grain boundaries. The proposed mesoscopic CA model has been mapped with the experimental data. A parametric study was conducted in order to check the importance of the main explicit parameters of the mesoscopic model. The boundary condition at the far end of the specimen has been investigated for the CA model. The model has benchmarked with the analytical solution and with the previous work of a pure diffusion process, and significant agreement has been reached. The developed CA model can be used to solve diffusion problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.