Abstract

The dynamic propagation behavior of the mode I interlaminar crack in unidirectional carbon/epoxy composites was investigated by using double cantilever beam (DCB) specimens. The dynamic interlaminar propagation toughness was obtained using a hybrid experimental-numerical method. Using a novel electromagnetic Hopkinson bar system, pure mode I fracture was guaranteed by symmetrical opening displacement rates in the range of 10 – 30 m/s. The crack velocities before crack arrest were between 100 and 250 m/s, which was monitored by crack-propagation gauges and high-speed photography. To model the interlaminar crack, a user-defined cohesive element was developed, which integrated the experimentally measured crack propagation history. The propagation toughness was calculated by the energy balance method and the dynamic J-integral technique. Results from extensive studies indicate that the dynamic propagation toughness is not a single-valued function of the crack velocity for mode I interlaminar crack. Both the external dynamic loads and the interaction with the bending waves emanating from the moving crack tip affect the behavior of the crack propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call