Abstract

A method combining experimental and finite element analysis is developed to determine interlaminar dynamic fracture toughness. An interlaminar crack is propagated at very high speed in a double cantilever beam (DCB) specimen made of two steel strips which are bonded together by epoxy with a precrack of about 40 mm length. The face of the front cantilever is bonded to a large solid block and a special fixture is designed to apply impact load to the rear cantilever through a load bar. In the load bar, a compressive square shaped elastic stress pulse is generated by impacting it with a striker bar which is accelerated in an air gun. The rear cantilever is screwed to the load bar; when the incident compressive pulse reaches the specimen, a part of the energy is reflected into the load bar and the rest of it passes to the specimen. By monitoring the incident and the reflected pulses in the load bar through strain gauges, deflection of cantilever-end is determined. The crack velocity is determined by three strain gauges of 0.2 mm gauge length bonded to the side face of the rear cantilever. Further, the first strain gauge, bonded very close to the tip of the precrack, and the crack velocity determine the initiation time of crack propagation. The experimental results are used as input data in a finite element (FE) code to calculate J-integral by the gradual release of nodal forces to model the propagation of the interlaminar crack. The initiation fracture toughness and propagation fracture toughness are evaluated for an interlaminar crack propagating with a velocity in the range of 850 to 1785 m/s. The initiation toughness and propagation toughness were found to vary between 90–200 J/m 2 and 2–13 J/m 2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call