Abstract
The impact of capital deepening on total factor productivity (TFP) is a significant and controversial issue. Based on the calculation of relevant indicators, this study adopts a Bayesian time-varying parameter model, Bayesian quantile regression, and adaptive Bayesian quantile models for in-depth statistical analysis. TFP was found to have a complex non-linear structure, and physical and human capital deepening indicators show a significant upward trend. The deepening of physical capital has a negative impact on TFP, while the deepening of human capital has a positive impact. In the capital deepening structure, the level of TFP has been improved and its structure optimized. Primary human and non-production physical capital deepening has no significant effect on TFP, while secondary human capital deepening has some significant effects on TFP. Tertiary and productive human capital deepening of TFP present two different forms of significant effect: the influence coefficient of the former declines in the increasing quantile and the change is larger, while the latter has a stable negative impact. The results of this study provide insights in terms of the improvement of China’s productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.