Abstract

PCB (Printed Circuit Board)s are designed in various sizes and shapes, use variety of processes and materials, and perform a variety of electrical, structural, and some times thermal functions. The major elements of PCBs are the fabric, the resin, and the metal foil (usually copper). The auxiliary elements are the adhesion promoters or treatments that are applied to the fabric and to the copper to assure maximum adhesion of the resin to the fabric and to the copper. Each copper layer has complicated and different pattern to correctly operate for its mission. In that case, the stiffness of PCBs are affected by the copper layers. By reasoning of this complicated copper layer pattern, it is difficult to determine the PCB stiffness. SAR (Solar Array Regulator) for Korea Leo Earth Observation & Science Satellites Program uses two PCBs of different types and sizes. These PCBs are composed of the resin system and copper layers, and not used the fabric. For this study, arm converter board applied to the SAR components is considered. In this study, the methodology of calculation of the PCB stiffness for SAR component is suggested considering the concept of simplified representative volume element and this property will be correlated with the vibration test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.