Abstract
When a steel box girder is constructed using the jacking method, the contact area between the jack and the bottom of the girder is subjected to complex forces, and it is very critical to ensure the local stability of the girder. When the phenomenon of unsynchronized jacking occurs, it will lead to changes in the contact area and affect the structural safety. In order to solve the above problems, this paper takes the background of the incremental launching construction of the main bridge across the Yellow River on Jiao Ping Expressway, adopts the Midas FEA NX 2021 finite element software to establish a finite element hybrid unit model under the maximum cantilever condition for the first time, and analyzes the local stresses in this state. The results show that the local maximum equivalent stress of the steel box girder is 198.301 MPa, which meets the requirements. The effect of jacking asynchrony on the structural forces is analyzed by simulating jacking asynchrony in the local model. The results show that both vertical jacking asynchrony and lateral deflection will lead to an increase in local stresses in the steel box girder and even steel yielding. On the basis of the above single-parameter study, a two-parameter correlation analysis is carried out to obtain the two-parameter control equation of jacking, the control threshold of the vertical jacking height difference is formulated to be 15 mm, and the dynamic control of lateral deflection is realized according to the control equation. Through comparison, it is found that the two-parameter control threshold of jacking synchronization is reduced, which can supplement the unfavorable state missed during single-parameter control and is a safer and more effective means of control.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have