Abstract
Glial-neuronal cell interactions at the ventral midline are necessary for the proper elaboration of commissures in the embryonic CNS of Drosophila. In particular, migrating midline glial cells are required for the separation of segmental commissures. During this process the glial cells recognize specific neuronal cells at the midline, they migrate posteriorly along their cell processes and thereby separate the segmental commissures. The gene pointed (pnt) is required for this glial-neuronal cell interaction, as loss of function mutations lead to a change in the migration behavior of the midline glial cells. As a consequence, anterior and posterior commissures do not become separated and appear fused. Molecular analysis of pointed has revealed two differently spliced types of transcripts, which are encoded in a region extending over 55 kb of genomic sequence. In the CNS both transcript classes are expressed in cells of the midline, including the midline glial cells. Sequence analysis of cDNA clones corresponding to both transcript types reveals two different pointed proteins which share an ETS domain common to a number of transcription factors related to the vertebrate ets oncogene. Furthermore, one pointed protein form contains an additional domain of homology of approx. 80 amino acids in length, which is shared by only a subset of the ETS protein family.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have