Abstract
Hair graying is processed by the inactivation of tyrosinase caused by the accumulation of oxidative stress and a decrease in the number of melanocytes. Therefore, the purpose of this study was to investigate the effect of SIRT1 gene knockout using the CRISPR/Cas9 system on the protein and gene expressions related to melanogenesis. In this study, the mutation in the SIRT1 knockout(KO) gene was verified by T7EI assay and Sanger DNA sequencing. Furthermore, the expression levels of SIRT1 protein and gene in KO cells were remarkably decreased compared with normal cells. Therefore, the SIRT1 gene KO cell line was successfully established for further study. The KO cells also increased SA-β-galactosidase and decreased melanin production and the scavenging activity of hydrogen peroxide. In particular, the down-regulation of p38 and c-kit as well as the up-regulation of ERK resulted in the inactivation of MITF in the KO cells. Thus, KO cells reduced the expressions of Tyrosinase, Tyrosine hydroxylase, TRP-1 and TRP-2 through the negative modulation of MITF. Furthermore, SIRT1 gene KO cells negatively modulated antioxidant proteins such as Catalase, MnSOD, MsrA and MsrB3 through FOXO1 and Keap1. Therefore, it is suggested that SIRT1 could play a positive role in melanogenesis via MITF and FOXO1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have