Abstract

The induction of angiogenesis and the promotion of tumor growth and invasiveness are processes critical to metastasis, and are dependent on reciprocal interactions between tumor cells and their microenvironment. The formation of a clinically relevant tumor requires support from the surrounding stroma, and it is hypothesized that three-dimensional (3D) tumor coculture models offer a microenvironment that more closely resembles the physiological tumor microenvironment. In this study, we investigated the effects of tissue-engineered 3D architecture and tumor-stroma interaction on the angiogenic factor secretion profiles of U2OS osteosarcoma cells by coculturing the tumor cells with immortalized fibroblasts or human umbilical vein endothelial cells (HUVECs). We also carried out Transwell migration assays for U2OS cells grown in monoculture or fibroblast coculture systems to study the physiological effect of upregulated angiogenic factors on endothelial cell migration. Anti-IL-8 and anti-vascular endothelial growth factor (VEGF)-A therapies were tested out on these models to investigate the role of 3D culture and the coculture of tumor cells with immortalized fibroblasts on the efficacy of antiangiogenic treatments. The coculture of U2OS cells with immortalized fibroblasts led to the upregulation of IL-8 and VEGF-A, especially in 3D culture. Conversely, coculture with endothelial cells resulted in the downregulation of VEGF-A for cells seeded in 3D scaffolds. The migration of HUVECs through the Transwell polycarbonate inserts increased for the 3D and immortalized fibroblast coculture models, and the targeted inhibition of IL-8 greatly reduced HUVEC migration despite the presence of VEGF-A. A similar effect was not observed when anti-VEGF-A neutralizing antibody was used instead, suggesting that IL-8 plays a more critical role in endothelial cell migration than VEGF-A, with significant implications on the clinical utility of antiangiogenic therapy targeting VEGF-A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.