Abstract

We report a quantum dynamical treatment of the vibrational excitation of the bending mode of water molecules by collision with low energy positrons in the energy regions close to threshold openings. The exact vibrationally coupled-channel equations derived for the total e+-H2O system are solved in a Body-Fixed-Vibrational-Coupled-Channels (BF-VCC) reference frame, using a single-center expansion of the total wavefunction and of the interaction potential. The vibrationally inelastic cross-sections for transitions from the ground to the lowest excited state of the bending mode clearly show the bending excitation channel to be the dominant inelastic process at low collision energies. Comparisons with our earlier calculations for the other modes and for the excited processes induced by electron impact are also presented and analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call