Abstract
We investigate the mechanical resonance characteristics of semiconductor rolled-up tubes containing a high-mobility two-dimensional electron gas (HM2DEG) by optical and electrical means. The observed mode frequencies are in an excellent agreement with the theoretically calculated frequencies for the ground bending and excited bending and axial modes. The effect of the curvature is to increase the frequencies of the ground bending modes and the axial wave modes, while decreasing the frequencies of the first excited bending modes. We find significant splitting of the bending and twisting modes by the residual stress effects due to axial shear relaxation in $z$-dependent modes. The HM2DEG interacts with the mechanical motion due to Eddy currents and embedded impedances. A prominent asymmetry appears in the vibration amplitude with respect to the direction of the magnetic field. This originates from the broken symmetry of the HM2DEG on the curved surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.