Abstract

ABSTRACT Though the Pareto distribution is important to actuaries and economists, an exact expression for the distribution of the sum of n i.i.d. Pareto variates has been difficult to obtain in general. This article considers Pareto random variables with common probability density function (pdf) f(x) = (α/β) (1 + x/β)α+1 for x > 0, where α = 1,2,… and β > 0 is a scale parameter. To date, explicit expressions are known only for a few special cases: (i) α = 1 and n = 1,2,3; (ii) 0 < α < 1 and n = 1,2,…; and (iii) 1 < α < 2 and n = 1,2,…. New expressions are provided for the more general case where β > 0, and α and n are positive integers. Laplace transforms and generalized exponential integrals are used to derive these expressions, which involve integrals of real valued functions on the positive real line. An important attribute of these expressions is that the integrands involved are non oscillating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.