Abstract
An essential aspect of the practical application of Erlang single-server queues is the statistical inference of their parameters, notably traffic intensity. This metric is crucial as it serves as a fundamental performance indicator, allowing the derivation of other significant measures, including the mean queue size and the expected number of customers in the system. Additionally, it provides the proportion of time the queue system is occupied. This article explores algorithms for calculating sample sizes for these estimations, based on the number of customers who arrived during service periods, a highly intuitive approach, allowing data collection without concerns about correlations among data points. For this purpose, we have considered two forms of informative priors: Gauss hypergeometric and beta priors. Additionally, a non conjugate and objective prior, known as Jeffreys prior, has been taken into account. We present tables with sample sizes for specific configurations and abacuses for more general configurations obtainable through approximate interpolations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.