Abstract
Distributions of equivalent plastic strains in an A16061/SiC fibre composite measured using the electron back scatter pattern (EBSP) technique were compared to plastic strain and stress distributions calculated using a continuum mechanics model solved by finite element analysis (FEA). Close to the interface EBSP measurements indicated higher dislocation densities than expected for strains calculated in such a region using the FEA model, the excess dislocations presumably being necessary to preserve the continuity of the interface. EBSP measurements also indicated considerable dislocation density in matrix regions where the FEA model calculated small plastic strains due to the production of a nearly hydrostatic tensile stress state. Inhomogeneities in the microstructure of the real matrix material can generate local shear stresses and so lead to production of dislocations even though the far field stress state has no shear component. Thus the dislocation density was controlled by the magnitude of the hydrostatic tension rather than the deviatoric stress components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.