Abstract
Maternally inherited cytoplasmic bacteria have occasionally been observed in embryos and adults of different strains of several Drosophila species. While there is a considerable body of data on the relationship between bacteria and embryo viability, little is known about the behavior of these bacteria during the early development of Drosophila. In eggs laid by infected Drosophila melanogaster females we showed that cytoplasmic bacteria were initially concentrated in a thin cortical layer and scattered in the yolk region. During the following syncytial blastoderm mitoses the bacteria mainly accumulated towards the poles of the mitotic spindles, suggesting that astral microtubules play a role in localizing bacteria. This is supported by the observation that treatment of the infected embryos with the microtubule-disrupting drug colchicine led to the partial dissociation of the bacteria from the spindle poles, whereas cytochalasin treatment left almost all the bacterial clusters intact. Moreover, bacteria were not found near the polar bodies and yolk nuclei, which were without astral microtubules. In mitosis-defective embryos, with centrosomes dissociated from the nuclei, the bacteria were concentrated in association with the isolated astral microtubules, and in cold-treated embryos, in which microtubules regrew from isolated centrosomes after recovering, the bacteria clustered around the newly formed asters. These observations, also supported by electron microscope analysis, indicate a close relationship between cytoplasmic bacteria and astral microtubules, and suggest that the latter were able to build discrete cytoplasmic domains ensuring the proper distribution of cytoplasmic components during the blastoderm mitoses, despite the lack of cell membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.