Abstract

Brain–computer interfaces (BCIs) system designed using the steady-state visual evoked potential (SSVEP) signal have been widely studied because of their high accuracy of classification and high rates of the information transfer. However, the SSVEP is typically measured over the occipital scalp region (channels O1, O2, and Oz), which makes this type of BCI unsuitable for some patients. We investigated the classification accuracy of SSVEP over the whole scalp, to evaluate the feasibility of building SSVEP-based BCIs that use additional channels. The classification accuracy distribution of the whole scalp increased with the electrode positions closer to the occipital region, and the classification accuracy increased with an increasing number of electroencephalogram data channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.