Abstract

Metallic taper junctions of modular total hip replacement implants are analysed for corrosion damage using visual scoring based on different granularity levels that span from analysing the taper holistically to dividing the taper into several distinct zones. This study aims to objectively explore the spatial distribution and the severity of corrosion damage onto the surface of metallic stem tapers. An ordinal logistic regression model was developed to find the odds of receiving a higher score at eight distinct zones of 137 retrieved stem tapers. A method to find the order of damage severity across the eight zones is introduced based on an overall test of statistical significance. The findings show that corrosion at the stem tapers occurred more commonly in the distal region in comparison with the proximal region. Also, the medial distal zone was found to possess the most severe corrosion damage among all the studied eight zones.

Highlights

  • Despite the clinical benefits of modularity in total hip replacement (THR) implants, modular interfaces such as head-neck taper junction sustain mechanically assisted crevice corrosion due to relative micro-motions at the metallic interface and the presence of corrosive body fluid [1,2].Previous studies [3,4,5] have reported that the solid and soluble wear debris and corrosion products released from the head-neck junction may elicit untoward host body reactions such as osteolysis, peri-prosthetic fracture, and metallosis

  • Visual scoring of the 137 stem tapers across the eight zones resulted in 1096 corrosion scores

  • This study shows that the distal region of all the four quadrants had more corrosion damage in comparison with the proximal region of those quadrants

Read more

Summary

Introduction

Despite the clinical benefits of modularity in total hip replacement (THR) implants, modular interfaces such as head-neck taper junction sustain mechanically assisted crevice corrosion due to relative micro-motions at the metallic interface and the presence of corrosive body fluid [1,2]. Previous studies [3,4,5] have reported that the solid and soluble wear debris and corrosion products released from the head-neck junction may elicit untoward host body reactions such as osteolysis, peri-prosthetic fracture, and metallosis. Through large-scale retrieval studies, the surface damage sustained by retrieved implants is assessed, and possible associations between several implant/patients factors and the extent/location of the damage are investigated. Each study employs a causal-explanatory statistical modelling to investigate the effect of a particular set of factors (predictors) on the damage score

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.