Abstract

The nucleus accumbens of the rat consists of several subregions that can be distinguished on the basis of histochemical markers. For example, the calcium-binding protein calbindin D28k is a useful marker of the core compartment of the nucleus accumbens. Calretinin, another calcium-binding protein, is found in a dense fibre plexus in the accumbal shell and septal pole regions. The source of the accumbal calretinin innervation is not known. We examined the distribution of calretinin in the nucleus accumbens and used tract-tracing and lesion methods to determine the source of this calretinin innervation. Intense calretinin immunoreactivity was present in the medial shell, but the density of calretinin axons diminished sharply in the ventrolateral shell. Regions of dense calretinin immunostaining and those areas with calbindin-like immunoreactive cell bodies were generally segregated in the nucleus accumbens, although some overlap in the transition region between the core and shell was seen. Small clusters of calretinin-immunoreactive fibres were seen in the core, where they were restricted to calbindin-negative patches. Injections of the anterograde tracer biotinylated dextran amine into the paraventricular thalamic nucleus labelled fibres in calretinin-rich regions of the accumbens. Conversely, injections of Fluoro-gold into the accumbal shell retrogradely labelled numerous cells in the paraventricular thalamic nucleus that were calretinin-immunoreactive. Electrolytic lesions of the paraventricular thalamic nucleus reduced calretinin levels in the shell by approximately 80%. These data indicate that the calretinin innervation of the nucleus accumbens is derived primarily from the thalamic paraventricular nucleus, and marks accumbal territories that are largely complementary to those defined by calbindin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.