Abstract
The ocean bottom flying node (OBFN) is a novel autonomous underwater vehicle (AUV) system which could explore the oil and gas resources in deep water. This paper investigates the distributed finite-time chattering reduction containment control problem for multiple OBFNs under directed communication topology. The model uncertainties and external disturbances are considered. By defining the containment error variables and selecting high-order sliding variable properly, a distributed finite-time containment control strategy is developed. The discontinuous sign function is contained in the derivative of the control protocol so as to eliminate the chattering phenomenon. An adaptive law is designed to make efficiency estimation and compensation for the upper bounds of model uncertainties and external disturbances. Combined with the graph theory and matrix theory, the Lyapunov method is utilized to demonstrate that the follower OBFNs could enter the convex hull formed by the leader OBFNs in finite time. Numerical simulation is provided to show the effectiveness of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have