Abstract

For any (real) algebraic variety X in a Euclidean space V endowed with a nondegenerate quadratic form q, we introduce a polynomial EDpolyX,u(t2) which, for any u∈V, has among its roots the distance from u to X. The degree of EDpolyX,u is the Euclidean Distance degree of X. We prove a duality property when X is a projective variety, namely EDpolyX,u(t2)=EDpolyX∨,u(q(u)−t2) where X∨ is the dual variety of X. When X is transversal to the isotropic quadric Q, we prove that the ED polynomial of X is monic and the zero locus of its lower term is X∪(X∨∩Q)∨.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.