Abstract
Triple orthogonal coordinate systems having coordinate lines as circles or straight lines are considered. Technically, they are represented by trilinear rational quaternionic maps and are called Dupin cyclidic cubes, naturally generalizing the bilinear rational quaternionic parametrizations of principal patches of Dupin cyclides. Dupin cyclidic cubes and their singularities are studied and classified up to Möbius equivalency in Euclidean space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.