Abstract

Dupin cyclides are non-spherical algebraic surfaces of degree 4, discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide has a parametric equation and two implicit equations and circular lines of curvature. It can be defined as the image of a torus, a cone of revolution or a cylinder of revolution by an inversion. A torus has two families of circles : meridians and parallels. There is a third family of circles on a ring torus: Villarceau circles. As the image, by an inversion, of a circle is a circle or a straight line, there are three families of circles onto a Dupin cyclide too. The goal of this paper is to construct, onto a Dupin cyclide, 3D triangles with circular edges: a meridian arc, a parallel arc and a Villarceau circle arc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.