Abstract

Distance geometry methods are used to turn a set of interatomic distances given by Nuclear Magnetic Resonance (NMR) experiments into a consistent molecular conformation. In a set of papers (see the survey [8]) we proposed a Branch-and-Prune (BP) algorithm for computing the set X of all incongruent embeddings of a given protein backbone. Although BP has a worst-case exponential running time in general, we always noticed a linear-like behaviour in computational experiments. In this chapter we provide a theoretical explanation to our observations. We show that the BP is fixed-parameter tractable on protein-like graphs and empirically show that the parameter is constant on a set of proteins from the Protein Data Bank.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call