Abstract
The fundamental inverse problem in distance geometry is the one of finding positions from inter-point distances. The Discretizable Molecular Distance Geometry Problem (DMDGP) is a subclass of the Distance Geometry Problem (DGP) whose search space can be discretized and represented by a binary tree, which can be explored by a Branch-and-Prune (BP) algorithm. It turns out that this combinatorial search space possesses many interesting symmetry properties that were studied in the last decade. In this paper, we present a new algorithm for this subclass of the DGP, which exploits DMDGP symmetries more effectively than its predecessors. Computational results show that the speedup, with respect to the classic BP algorithm, is considerable for sparse DMDGP instances related to protein conformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.