Abstract

We study the discrete time algebraic Riccati equation. In particular we show that even in the most general cases there exists a one-one correspondence between solutions of the algebraic Riccati equation and deflating subspaces of a matrix pencil. We also study the relationship between algebraic Riccati equation and the discrete time linear matrix inequality. We show that in general only a subset of the set of rank-minimizing solutions of the linear matrix inequality correspond to the solutions of the associated algebraic Riccati equation, and study under what conditions these sets are equal. In this process we also derive very weak assumptions under which a Riccati equation has a solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.