Abstract

Single crystals of Zn x Cd 1− x S have been grown from the vapour phase at 1100°C in the presence of H 2S gas. X-ray diffraction studies of the as-grown crystals show that polytypism and stscking faults occur in Zn x Cd 1− x S crystals for x ⩾ 0.94. It is observed that for 0.92 < x < 0.98 the 2H structure of Zn x Cd 1− x S crystals transforms to a disordered 6H structure on annealing in vacuum around 600°C. For 0.95 < x < 0.98 this 6H structure finally transforms to a disordered 3C structure on annealing further at higher temperatures around 800°C. The structural transformations occur through a non-random insertion of stacking faults, as revealed by the diffuse streak joining the X-ray diffraction maxima along the 10. L reciprocal lattice row. Experimental investigation of the diffuse intensity distribution, as recorded on a single crystal diffractometer from partially transformed single crystals, reveals that the mechanism of the transformation is very different from that reported for the same transformation in silicon carbide and cannot be described in terms of a single-parameter model of non-random deformation faulting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.