Abstract
In this paper, a Petrov—Galerkin scheme named the Runge—Kutta control volume (RKCV) discontinuous finite element method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge—Kutta discontinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have