Abstract

In this paper we consider the direct scattering problem of obliquely incident time-harmonic electromagnetic plane waves by an infinitely long dielectric cylinder. We assume that the cylinder and the outer medium are homogeneous and isotropic. From the symmetry of the problem, Maxwell's equations are reduced to a system of two 2D Helmholtz equations in the cylinder and two 2D Helmholtz equations in the exterior domain where the fields are coupled on the boundary. We prove uniqueness and existence of this differential system by formulating an equivalent system of integral equations using the direct method. We transform this system into a Fredholm type system of boundary integral equations in a Sobolev space setting. To handle the hypersingular operators we take advantage of Maue's formula. Applying a collocation method we derive an efficient numerical scheme and provide accurate numerical results using as test cases transmission problems corresponding to analytic fields derived from fundamental solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.