Abstract
The propagation of harmonic elastic wave in an infinite three-dimensional matrix containing an interacting low-rigidity disk-shaped inclusion and a crack. The problem is reduced to a system of boundary integral equations for functions that characterize jumps of displacements on the inclusion and crack. The unknown functions are determined by numerical solution of the system of boundary integral equations. For the symmetric problem, graphs are given of the dynamic stress intensity factors in the vicinity of the circular inclusion and the crack on the wavenumber for different distances between them and different compliance parameters of the inclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Applied Mechanics and Technical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.