Abstract

We consider herein the diffusion entropy stochastic gradient descent (DE-SGD) algorithm for non-circular complex-valued signals. We theoretically analyze the mean stability and the steady-state network mean-square-deviation (MSD) of the DE-SGD. We develop both the quasi-optimal static and adaptive combination strategies to enhance the DE-SGD algorithm so as to utilize the spatial variations of the noise circularity coefficients, noise variances, the regressor powers and the step sizes across the entire network. We validate the proposed adaptive combiners theoretically and experimentally in small step size scenarios. We also demonstrate the consistency of the convergence and steady-state performance of both the static combiners and the proposed adaptive combiners. Illustrative simulations and real-world data evaluation validate the superior transient and steady-state performance of the DE-SGD algorithm with the proposed quasi-optimal combination strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.