Abstract
Linear prediction methods, such as least squares for regression, logistic regression and support vector machines for classification, have been extensively used in statistics and machine learning. In this paper, we study stochastic gradient descent (SGD) algorithms on regularized forms of linear prediction methods. This class of methods, related to online algorithms such as perceptron, are both efficient and very simple to implement. We obtain numerical rate of convergence for such algorithms, and discuss its implications. Experiments on text data will be provided to demonstrate numerical and statistical consequences of our theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.