Abstract

In this paper we separate many-one reducibility from truth-table reducibility for distributional problems in DistNP under the hypothesis that P � NP . As a first example we consider the 3-Satisfiability problem (3SAT) with two different distributions on 3CNF formulas. We show that 3SAT with a version of the standard distribution is truth-table reducible but not many-one reducible to 3SAT with a less redundant distribution unless P = NP . We extend this separation result and define a distributional complexity class C with the following properties: (1) C is a subclass of DistNP, this relation is proper unless P = NP. (2) C contains DistP, but it is not contained in AveP unless DistNP \subseteq AveZPP. (3) C has a ≤ p m -complete set. (4) C has a ≤ p tt -complete set that is not ≤ p m -complete unless P = NP. This shows that under the assumption that P � NP, the two completeness notions differ on some nontrivial subclass of DistNP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.