Abstract

Nonuniformity is a central concept in computational complexity with powerful connections to circuit complexity and randomness. Nonuniform reductions have been used to study the isomorphism conjecture for NP and completeness for larger complexity classes. We study the power of nonuniform reductions for NP0completeness, obtaining both separations and upper bounds for nonuniform completeness vs uniform complessness in NP. Under various hypotheses, we obtain the following separations: 1. There is a set complete for NP under nonuniform many-one reductions, but not under uniform many-one reductions. This is true even with a single bit of nonuniform advice. 2. There is a set complete for NP under nonuniform many-one reductions with polynomial-size advice, but not under uniform Turing reductions. That is, polynomial nonuniformity is stronger than a polynomial number of queries. 3. For any fixed polynomial p(n), there is a set complete for NP under uniform 2-truth-table reductions, but not under nonuniform many-one reductions that use p(n) advice. That is, giving a uniform reduction a second query makes it more powerful than a nonuniform reduction with fixed polynomial advice. 4. There is a set complete for NP under nonuniform many-one reductions with polynomial ad- vice, but not under nonuniform many-one reductions with logarithmic advice. This hierarchy theorem also holds for other reducibilities, such as truth-table and Turing. We also consider uniform upper bounds on nonuniform completeness. Hirahara (2015) showed that unconditionally every set that is complete for NP under nonuniform truth-table reductions that use logarithmic advice is also uniformly Turing-complete. We show that under a derandomization hypothesis, the same statement for truth-table reductions and truth-table completeness also holds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.