Abstract
The current classification of stroke is based on causation, also called pathogenesis, and relies on binary logic faithful to the Aristotelian tradition. Accordingly, a pathology is or is not the cause of the stroke, is considered independent of others, and is the target for treatment. It is the subject for large double-blind randomized clinical therapeutic trials. The scientific view behind clinical trials is the fundamental concept that information is statistical, and causation is determined by probabilities. Therefore, the cause and effect relation will be determined by probability-theory-based statistics. This is the basis of evidence-based medicine, which calls for the results of such trials to be the basis for physician decisions regarding diagnosis and treatment. However, there are problems with the methodology behind evidence-based medicine. Calculations using probability-theory-based statistics regarding cause and effect are performed within an automatic system where there are known inputs and outputs. This method of research provides a framework of certainty with no surprise elements or outcomes. However, it is not a system or method that will come up with previously unknown variables, concepts, or universal principles; it is not a method that will give a new outcome; and it is not a method that allows for creativity, expertise, or new insight for problem solving.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have