Abstract

Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs) regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist), and GW9662 (a PPARγ antagonist). Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif) ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1)) and interleukin 6 (Il6) mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM) from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.

Highlights

  • Obesity is a worldwide concern and is associated with a state of chronic inflammation characterized by increased production of inflammatory cytokines/chemokines [1]

  • Daidzein treatment significantly inhibited the increase of Ccl2 and interleukin 6 (Il6) (Fig 1); in contrast, the expressions of Tnf and adiponectin were unaltered (Fig 1A)

  • Obesity-induced adipose inflammation by paracrine interactions between adipocytes and adipose-infiltrating macrophages plays a causative role in insulin resistance in obesity [3, 28], and is characterized by abnormal secretion of pro-inflammatory cytokines in white adipose tissues [28, 29]

Read more

Summary

Introduction

Obesity is a worldwide concern and is associated with a state of chronic inflammation characterized by increased production of inflammatory cytokines/chemokines [1]. The macrophages that are infiltrated in, and activated by, obese adipose tissue contribute to the elevation of inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and monocyte chemoattractant protein 1 (MCP-1, known as chemokine (C-C motif) ligand 2 (CCL2) in mice) [3,4,5]. These are attributed to systemic and local insulin resistance in an endocrine and paracrine fashion [6, 7]. It is reported that some isoflavones attenuate lipopolysaccharide (LPS)-induced inflammation via activation of the peroxisome proliferator-activated receptor (PPAR)-γ [17, 18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call