Abstract

The effect of the surface conductivity on the electrical and mechanical characteristics of the surface dielectric barrier discharge actuator has been numerically investigated in this study. Two typical ac-surface dielectric barrier discharge actuators, wire-to-plate and plate-to-plate, have been considered to control airflow alongside a flat dielectric plate. A sinusoidal high voltage of varied frequencies and amplitudes is supplied to the active electrode, and the passive electrode, which is grounded, is encapsulated inside a dielectric plate. Two-species ion transport model, involving generic positive and negative ions, coupled to the electrostatics model is assumed. The electrostatic field is affected by both the space and the surface charges. The surface charge is accumulated due to ion deposition, but its distribution varies due to the surface ohmic conduction. The Navier–Stokes equations for the flow simulation, which include the time-averaged electrohydrodynamic force determined from the discharge model, are solved to analyze the flow field and the boundary layer morphology. The numerical algorithm has been implemented in the COMSOL commercial package. The significance of the dielectric surface conductivity on the discharge behavior and the flow field has been shown. The dielectric surface conductivity behaves nonmonotonically and affects the flow field by altering the electrohydrodynamics force strength, direction, and distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.