Abstract
The characteristics of a plate-to-plate AC surface dielectric barrier discharge (SDBD) actuator using the pulse-induced breakdown enhancing method are experimentally investigated. The encapsulated electrode is supplied with a sine high AC voltage, while the exposed electrode is feed by a synchronized pulse voltage. Based on the thrust force and power consumption measurements, a parametric study was performed using a positive pulse applied at the trough phase of the AC cycles in which the thrust force was observed to increase by about 100% to 300% and the efficiency up to about 100% compared with the AC-only supply conditions for different AC voltages within the tested range. The pulse-induced breakdown effect was analyzed from the electrical and light emission waveforms to reveal the underlying mechanism. The surface potential due to the charge deposition effect was also measured using a specially designed corona-like discharge potential probe. It is shown that the pulse-induced breakdown was able to cause a temporarily intensified local electric field to enhance the glow-like discharge and meanwhile increase the time-average surface potential in the region further downstream. The improvement in the force by the enhancement in the pulse-induced breakdown was mainly due to enhancements in the glow-like discharge and the surface potential increment, with the latter being more important when the AC voltage is higher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.